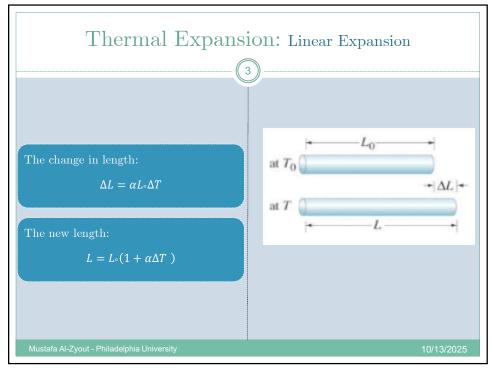
Chapter 9

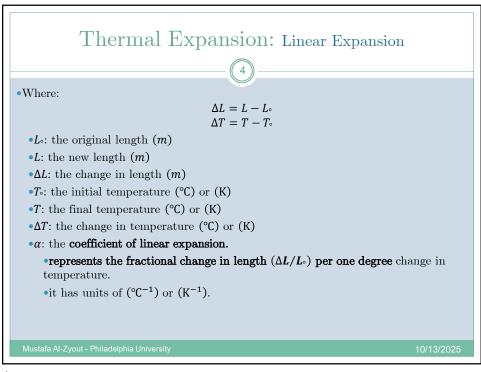
Thermal Properties

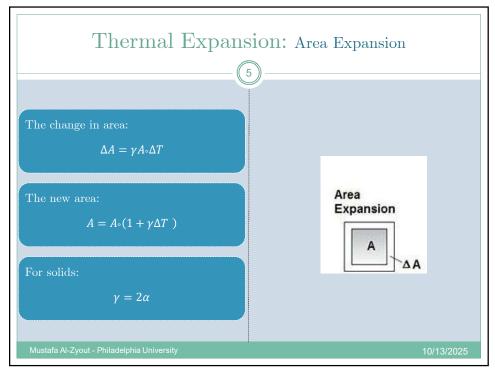
Mustafa Al-Zvout - Philadelphia Universit

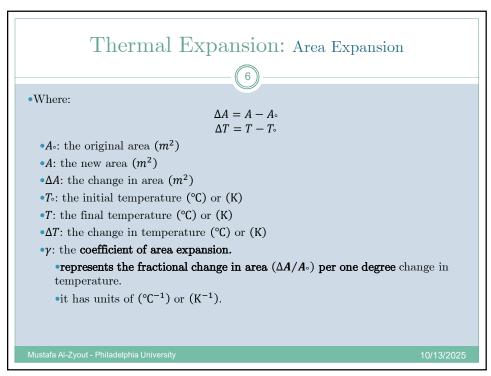
10/13/2024

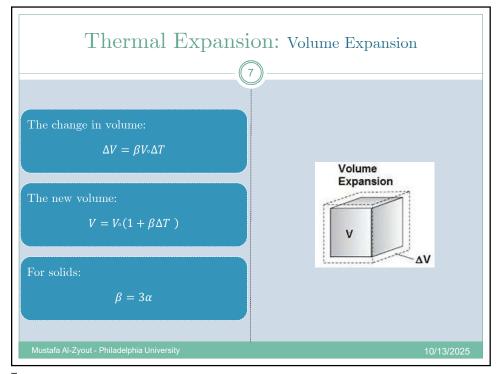
1

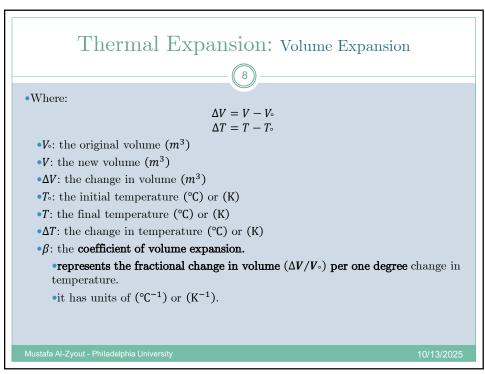

Thermal Expansion




- When a substance is heated, its volume usually increases, and each dimension increases correspondingly.
- This increase in size can be understood in terms of the increased kinetic energy of the atoms or molecules.
- The additional kinetic energy results in each molecule colliding more forcefully with its neighbours.
- The molecules effectively push each other farther apart, and the material expands.
- This phenomenon plays an important role in many engineering applications, such as the joints in buildings, highways, railroad tracks, bridges . . . etc.
- If the thermal expansion of an object is sufficiently small compared to its initial dimensions, then the change in any dimension (length, width, or thickness) is a linear function of the temperature.


Mustafa Al-Zyout - Philadelphia University


10/13/2025



Heat Capacity and Specific Heat

When an object at one temperature is placed near or in contact with another object at a higher temperature, energy is transferred to the cooler object, and its temperature rises.

The ratio of the amount of energy, (ΔQ) , transferred to the temperature change, (ΔT) , is called the heat capacity.

$$C = \frac{\Delta Q}{\Delta T}$$

Substances which have a high molar heat capacity, experience relatively small temperature changes when a given amount of heat is transferred.

SI units: J/K

Mustafa Al-Zvout - Philadelphia University

10/13/2025

Q

Heat Capacity and Specific Heat

The **specific heat capacity** (c): is the heat required for a unit temperature change in a unit mass of a substance.

$$c = \frac{C}{M}$$

• (M) is the molar mass.

In terms of c, the heat required for a temperature change (ΔT) in a mass (m) is:

$$\Delta Q = mc\Delta T$$

- \bullet When heat energy is added to objects, Q and ΔT are both positive.
- \bullet When heat energy is removed from objects, Q and ΔT are both negative.
- SI units: J/kg.K

Mustafa Al-Zyout - Philadelphia University

10/13/2025

Latent Heat and Phase Changes

When heat energy is transferred from one substance to another, the temperature of the substance often changes.

However, there are situations in which the transfer of energy does not change the temperature.

Instead, the substance may change from one form to another. Such a change is commonly referred to a phase change.

Mustafa Al-Zyout - Philadelphia University

10/13/2024

11

Latent Heat and Phase Changes

We consider the following two main common phase changes:

- A phase change from solid to liquid (as ice melting) and from liquid to gas (as water boiling), where heat energy is absorbed while the temperature remains constant.
- A phase change from gas to liquid (as steam condensing) and from liquid to solid (as water freezing), where heat energy is released while the temperature remains constant.

The amount of heat energy per unit mass, L, that must be transferred when a substance completely undergoes a phase change without changing temperature is called the **latent heat**.

Mustafa Al-Zyout - Philadelphia University

10/13/2025

Latent Heat and Phase Changes

If a quantity Q of heat energy transfer is required to change the phase of a pure substance of a mass m, then L=Q/m characterizes an important thermal property of that substance. That is:

$$Q = \mp mL$$

- A positive sign is used in this equation when energy enters the system, causing melting or vaporization of the substance,
- while a negative sign corresponds to energy leaving the system such that the substance condenses or solidifies.
- \bullet SI units: J/kg

Mustafa Al-Zvout - Philadelphia University

10/13/202

13

Latent Heat and Phase Changes

When a substance experiences a phase change from solid to liquid by absorbing heat, the heat of transformation is called the **latent heat of fusion** L_f .

When the substance releases heat and experiences a phase change from liquid back to solid, the heat of transformation is called the **latent heat of solidification** and is numerically equal to the latent heat of fusion.

In the case of water at its normal melting or freezing temperature, we have:

$$L_f = 3.33 \times 10^5 \ J/kg$$

Mustafa Al-Zyout - Philadelphia University

10/13/2025

Latent Heat and Phase Changes

When a substance experiences a phase change from liquid to gas by absorbing heat, the heat of transformation is called the **latent heat of vaporization** L_{v} .

When the gas releases heat and experiences a phase change from gas back to liquid, the heat of transformation is called the **latent heat of condensation** and is numerically equal to the latent heat of vaporization.

For water at its normal boiling and condensation temperatures, we have:

$$L_v = 2.256 \times 10^6 \ J/kg$$

Mustafa Al-Zvout - Philadelphia University

10/13/202

15

Mechanisms of Energy Transfer In Thermal Processes

- •We want to know the rate at which energy is transferred.
- There are various mechanisms responsible for the transfer:
 - Conduction
 - Convection
 - Radiation

Mustafa Al-Zyout - Philadelphia University

10/13/2025

Conduction

- The transfer can be viewed on an atomic scale.
 - It is an exchange of kinetic energy between microscopic particles by collisions.
 - × The microscopic particles can be atoms, molecules or free electrons.
 - Less energetic particles gain energy during collisions with more energetic particles.
- •Rate of conduction depends upon the characteristics of the substance.

Mustafa Al-Zyout - Philadelphia University

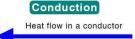
10/13/202

17

Conduction, cont.

- •In general, metals are good thermal conductors.
 - They contain large numbers of electrons that are relatively free to move through the metal.
 - They can transport energy from one region to another.
- •Poor conductors include paper and gases.
- •Conduction can occur only if there is a difference in temperature between two parts of the conducting medium.

Mustafa Al-Zyout - Philadelphia University


10/13/2025

Conduction, equation

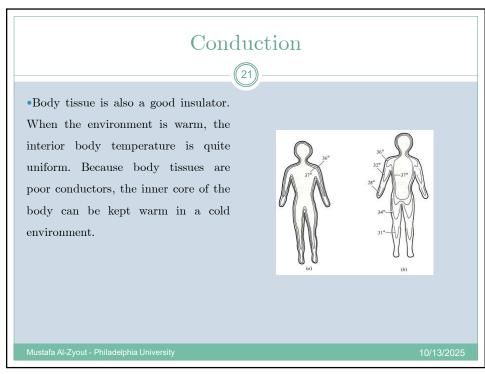
- Heat flows from the region of higher temperature to the region of lower temperature.
- The rate of transfer of energy (The heat flow) is given by:

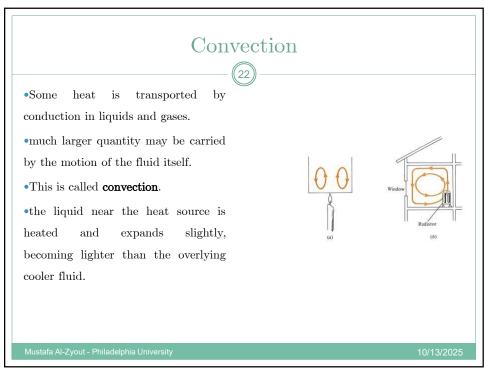
$$H = \frac{\Delta Q}{\Delta t} = \kappa A \frac{\Delta T}{L}$$

Mustafa Al-Zvout - Philadelphia Universi

0/13/2025

19

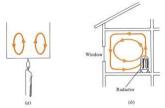

Conduction, equation explanation



- A is the cross-sectional area. (m^2)
- $\bullet \Delta T$ is the temperature difference. (K)
- $\bullet L$ is the thickness of the slab. (m)
 - $\,\circ\,$ Or the length of a rod
- ullet H is the heat flow. (in Watts when Q is in Joules and t is in seconds.)
- ${\color{red} \bullet} \frac{\Delta T}{L}$ is called the temperature gradient. (K/m)
- ${}^{ullet}\kappa$ is the thermal conductivity of the material. (W/m.K)
 - \circ Good conductors have high κ values and good insulators have low κ values.

Mustafa Al-Zyout - Philadelphia University

10/13/2025



Convection

- •It then rises and is replaced by cooler, heavier fluid.
- •When the warmer fluid arrives at the cooler region of the container, it cools, contracts, and begins to sink again.
- •Had the container been heated from the top, convection would not have occurred, and the bulk of the fluid would have been heated by the much slower conduction process.

Mustafa Al-Zvout - Philadelphia University

10/13/2025

23

Convection

- A hot-water or steam radiator provides another illustration of convection.
- Air near the radiator is heated and rises, while air near the outside walls and the windows is cooled and sinks.
- •This establishes the flow pattern shown.
- •In still air the rate of convective heat transfer for a surface area A is given approximately by:

$$H = qA \Delta T$$

- ${}^{\bullet}\Delta T$ is the temperature difference.
- $\bullet q$ is the convective heat transfer constant.
- •For a human, we use the average value $q = 7.1 \ W/m^2.K$.

Mustafa Al-Zyout - Philadelphia University

10/13/2025

Radiation

- •Conduction and convection require the presence of some material, be it solid, liquid, or gas.
- •We know that heat can also be transmitted through a vacuum, since the sun's energy traverses millions of kilometres of space before reaching the earth.
- The process by which this occurs is called **radiation**.
- •Radiant heat transfer also occurs in transparent media.

Mustafa Al-Zyout - Philadelphia Universit

10/13/202

Linear Expansion-1 Sunday, 17 October, 2021 21:10	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013. Kane		
The roadbed of the Gold	en gate bridge is 1280m long. During a certain year the		
temperature varies from -12°C to 38°C . What is the difference In the lengths at girders?			
$(\alpha_{steel} = 1.27 \times 10^{-5} \text{ K}^{-1})$	¹)		
Solution			
With $\Delta T = 3838^{\circ}C - (-2)$	$12^{\circ}C) = 50^{\circ}C = 50K$		
$\Delta L = \alpha L \Delta T = (1.27 \times 10)$	$^{-5}K^{-1}$)(1280 m)(50 K) = 0.81 m		
This substantial change i	in length must be allowed for in the design of the bridge. If		
the structure could not a	lter its length with changes in temperature, huge forces		
would be developed and	sever damage would result.		

Volume Expansion-1 Sunday, 17 October, 2021 21:10 Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014 J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 201 Kane
On a hot day, an oil trucker loaded $37000L$ of diesel fuel from an oil station. He encountered cold
weather on the way to delivery city, where the temperature was 23 K lower than in the station. How many liters did he deliver? The coefficient of volume expansion for diesel fuel is $(9.5 \times 10^{-4} \text{ K}^{-1})$ and
the coefficient of linear expansion for his steel truck tank is $(11 \times 10^{-6} \text{ K}^{-1})$
Solution
The volume of the diesel fuel depends directly on the temperature. Thus, because the temperature
decreased, the volume of the fuel did also, We find ΔV :
$\Delta V = \beta V \Delta T = \left(9.50 \times \frac{10^{-4}}{C}\right)(37000L)(-23.0K) = -808L$
Thus, the amount delivered was
$V_{del} = V + \Delta V = 37000L - 808L = 36190L$
Note that the thermal expansion of the steel tank has nothing to do with the problem.

 $Q = m_i c_i \Delta T = (1.00 \times 10^{-3} kg)(2090I/kg \cdot {}^{\circ}C)(30.0 {}^{\circ}C) = 62.7I$

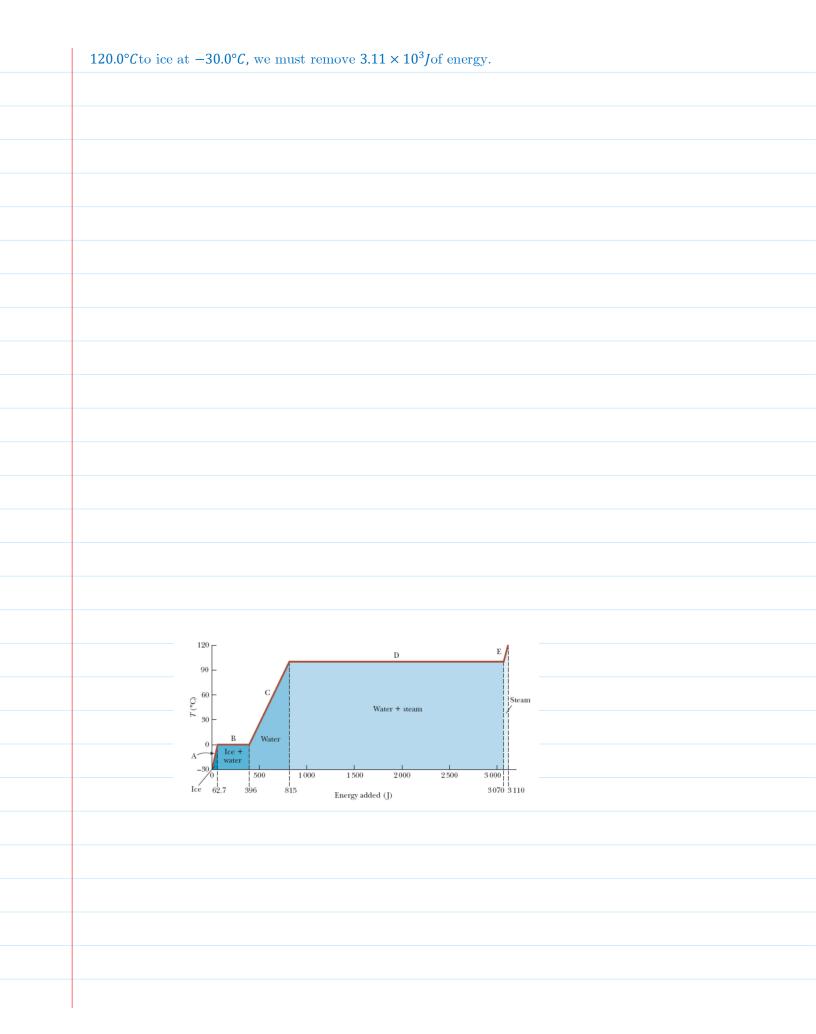
<u>Part B</u>: When the temperature of the ice reaches $0.0^{\circ}C$, the ice—water mixture remains at this temperature, even though energy is being added, until all the ice melts. The energy required to melt 1.00 g of ice at $0.0^{\circ}C$ is:

$$Q = L_f \Delta m_w = L_f m_i = \left(3.33 \times \frac{10^5 J}{kg}\right) (1.00 \times 10^{-3} kg) = 333J$$

At this point, we have moved to the 396J (= 62.7J + 333J) mark on the energy axis in the figure.

<u>Part C</u>: between $0.0^{\circ}C$ and $100.0^{\circ}C$, nothing surprising happens. No phase change occurs, and so all energy added to the water is used to increase its temperature. The amount of energy necessary to increase the temperature from $0.0^{\circ}C$ to $100.0^{\circ}C$ is

$$Q = m_w c_w \Delta T = (1.00 \times 10^{-3} kg) \left(4.19 \times \frac{10^3 J}{kg} \cdot {}^{\circ}C \right) (100.0 {}^{\circ}C) = 419 J$$


<u>Part D</u>: at $100.0^{\circ}C$, another phase change occurs as the water changes from water at $100.0^{\circ}C$ to steam at $100.0^{\circ}C$. Similar to the ice—water mixture in part B, the water—steam mixture remains at $100.0^{\circ}C$, even though energy is being added, until all the liquid has been converted to steam. The energy required to convert 1.00 g of water to steam at $100.0^{\circ}C$ is:

$$Q = L_v \Delta m_s = L_v m_w = (2.26 \times 10^6 J/kg)(1.00 \times 10^{-3} kg) = 2.26 \times 10^3 J$$

<u>Part E</u>: on this portion of the curve, as in parts A and C, no phase change occurs; therefore, all energy added is used to increase the temperature of the steam. The energy that must be added to raise the temperature of the steam from 100.0°C to 120.0°C is:

$$Q = m_s c_s \Delta T = (1.00 \times 10^{-3} kg) \left(2.01 \times \frac{10^3 J}{kg} \cdot {}^{\circ}C \right) (20.0 {}^{\circ}C) = 40.2 J$$

The total amount of energy that must be added to change 1 g of ice at $-30.0^{\circ}C$ to steam at $120.0^{\circ}C$ is the sum of the results from all five parts of the curve, which is $3.11 \times 10^{3}J$. Conversely, to cool 1 g of steam at

Sι	unday, 17 October, 2021 21:10
	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.
	R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learnin J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
	H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 201
	H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRING
	□ ✓ Kane
	A person walking at a modest speed generates heat at a rate of $280W$. If the surface area of t
	is $1.5 m^2$ and if the heat is assumed to be generated $0.03 m$ below the skin, what temperature
	difference between the skin and interior of the body would exist if the heat were conducted to
	surface? Assume $\kappa = 0.2 W/m. K$.
	Solution
	$H = \kappa A \frac{\Delta T}{L}$
	$\Delta T = \frac{LH}{\kappa A} = \frac{0.03 \times 280}{0.2 \times 1.5} = 28 K$
	Since the actual temperature difference is only a few degrees, we can conclude that heat is not
	removed from the body by conduction through tissue from the interior to the exterior of the body
	fact, the flow of warm blood from the interior of the body to the cooler exterior is the major fact
	body heat transport.
	body near transport.

Heat transfer by convection Sunday, 17 October, 2021 21:10	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013. Kane
	s a skin temperature of 33 °C. If the room temperature is 29 °C and the the rate of heat loss due to convection?
Solution	
Using $q = 7.1 W/m^2 K$, we have:	
$H = qA \Delta T$	
$H = 7.1 \times 1.5 \times 4 = 43 W$	